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FOREWORD

This technical report describes the work completed by the Institute for

Telecommunication Sciences, U.S. Department of Commerce, Boulder, Colorado, under

Project ILIR9209, "Over-the-Horizon Target Detection Feasibility Study." This

work has been supported by the Avionics Laboratory Director's Fund.

The work described herein is for the period November 1979 to May 1980, under

the direction of Mr. Raymond P. Wasky (AFWAL/AARI-3), Electro-Optics and Recon-

naissance Branch, Reconnaissance and Weapon Delivery Division, Air Force Avionics

Laboratory, Wright-Patterson Air Force Base, Ohio.

This report was submitted by the author in June 1980.
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SUMMARY

The purpose of this study was to generate a model for use in determining the

feasibility of detecting radar signals beyond the normal radar horizon. The

mechanisms to be considered were tropospheric ducting and earth diffraction. Until

recently, models of tropospheric ducts assumed that the ducts were horizontally

homogeneous, which led to significant errors when compared with experimental results.

Under this study, ducts are treated as laterally nonuniform stratifications in the

lower atmosphere.

A Green's function approach is used to derive an expression for the field

inside a laterally inhomogeneous duct. The laterally inhomogeneous duct is assumed

to have a single step discontinuity. The formulation for the field, convergence

criteria for the step size and the number of modes needed for a solution are discussed.
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SECTION I

INTRODUCTION

A solution to a very "sticky" problem is given, using the Green's function

method. The extension of the solution for propagation in a uniform medium to a

medium composed of steps, to represent the slow variation in refractive index with

distance along the direction of propagation, allows a solution for propagation in a

laterally inhomogeneous medium. The coupling between normal modes in each region is

easily separated out of the solution in the present formulation. The theory could be

used to study the problem of propagation of underwater sound waves in shallow water

with slowly varying depth.(l) The problem of propagation in a laterally inhomo-

geneous duct was investigated by Bahar (2) using an iterative solution to Maxwell's

equations directly.

q~r-



SECTION II

ANALYSIS

The geometry of the propagation problem is shown in Figure 1. The term duct

refers to the concept of the trapping of modes and the resulting propagation over

long distances.

I n2
n2 ol n r =: (32  \ .

r al -n, (Field Variation

rss ,.Observe?\

\/

\ /
\ /

SOrigin

Perfect Absorber
at 1*- o61 = r

I
I

Figure 1. Geometry for single step discontinuity in a tropospheric duct.
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Our approach will be to find the Green's function for the bounded waveguide
cross section in Figure 1. In particular, we will analyze the effect of the step

size, (a2-a,), and the refractive index contrast, n2-n 1.
The electric and magnetic fields will satisfy the two-dimensional, time-

harmonic, Helmholtz equation

1 G 3G + 2 6(r-r (S1-)S)

r ir (r r) + -2 -2 G r

r 0 r <c

0 < ¢ <2Tr

where (r s s ) and (r,@) are the source and observation coordinates respectively,

k is the wave number, and the time dependence is e Considering regions (I)

and (II) separately, G must meet the periodicity requirement, and we have

I _ G l _2 G 2 M(rr )

r r (r Tr r 2- +kG- r 6(-Os-2nTr) (2)
n=-o

We look for solutions to (2) with a singularity at rs, s on each "Riemann sheet",

n as

G(r, r') =ZG (r, rr = (r', 0 s + 2nr)

where G satisfies

1 a Go 1 2G 6(r-r s)6(-0s)
- r (r r) 2 2 +kG = +(k3)

r 2 2 r

The completeness relation is

G_(r, rn) = 2 g(r'rs;X)g4 (p, ps;X)dX (4)

where the contour (counterclockwise) in (4) is selected to enclose all the singu-

larities in the complex A-plane.
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If we define

v = Im(v)>O

dv = dX 
(5)

then the Green's function g¢ on an "infinite" angular transmission line is

iv(O-cs-2nr)

' 2iv (6)

with Ig 01 o as Iv-.o Substituting (6) in (4) gives

( ) 00 - 2 iv(O-Os-2nr)

(r,rs;V2)e dv (7)G(,T) 2 gr

with Fourier inversion

_iv( -_ s_2n-f)

gr(r, r s;V 2) =f G(r,r';O, s+2n7)e do. (8)

From (3), gr satisfies

1 (r 2gr V2  6(r-r S )
r r r k+ kr - r (9)

With a perfect absorber at 0-qsi =i, Figure 1 corresponds to the case n = o for

(7) and (8). Much of the discussion up to this point can be found in the litera-

ture. (3)

The field, E(r), in region (II) due to the aperture field in the plane 0=0o in

Figure (1) is obtained from Green's Theorem after integrating over the cylinder E

at infinity and over the aperture plane 0=00 yielding

aG8
(2 )

E(r) : _ fd'[E(r') G G2 (10)

where by analogy with the problem to the left of the aperture



G2) (r,r';L,') 2 (2) (rr'; v2 e (- ') dv, (11)

from which it follows that

G )  (2) 21 2

, *f (r,r';v )e v dv (12)

We now make the parabolic wave equation assumption

ET- ika I E(r') 13

Subsituting (12) and (13) into (10) gives

dr' E Fr) (2),r'; )ei - v') d,,
E(r) a Er' gErr(2 2  iv( ')14

a 0  1 -W

Ska g 1 2)(r,r;v2)eiv(P-o')dv]

and because we are interested in solutions when v kal , (14) becomes

kal dr' E(r' (2) 2 iv(2i -C')
E(r) = _ f r (r,r';v )e dv (15)

a -

0

Now, E(r') is the field in the plane =o due to the point source at rs, s neglecting

reflected fields and is given by

E(r') I g1) (r;,r;\ 2)e dv (16)
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Substituting (16) into (15) gives the solution

kal' f d g(l)(r 2.~) ()(r ;v2)e 0E lr a dr' "2(2 vl(%o- s)

S2d2 r, f dv1 2 (r' s;)g r  ,r'

a -0 -O (17)

*e

which is easily generalized to 2-step discontinuities as

a 0  a0_~) a f drl f dr' f dv (dv

a a -CO -CO -0

(18)

S (r 2 ) , (3)(r,r;v

eiv l(el-s) e v 2 ( 2-0I) eiv 3 (02"% )

The Green's function for the source rs  in the duct is given by the "broken"

function

T(v)[H l)(kr s) + Rl(v)H(
2)(kr )] H(1)(kr) , a1 < r <

(vI)[Hll)(kr) + Rz(v)H(2)(kr)]•

g(r,rs;V = .[H(l)(krs) + RI (2) (19)

Ct(V)[H~l)(krs) + Rs(v) H(2)(krs)] •

+ R1( H(2) (kr)] a0 < r < r

In (19) H(1 ) and H(2 ) are Hankel functions of the first and second kind.
VV



where a1 is the height where the refractive index changes from k to k where

k = k(l - An) (20)

and a0 is the radius of the earth and An is the refractive index contrast.

The Green's function if the source is outside the duct is

M(v)[H (kr)) + R2 (v)H
2)(krs)JH(1)(kr), rs < r < o-

^ V K ) s  ^ V

g(r,rs;v2) = a(v)[H(kr) + R2(v) H 2)(kr)]H l)(krs), a2 < r < rs  (21)

T(v)[H(1)(kr) + R (v) H(2)(kr)]H l)(krs), a < r< a2

where the height of the duct is now labeled a2 , because, as we see in Figure 2,

the integration point for Region II eventually lies outside the duct.

From the jump condition

- -r -( 2 2 )

r=rs +E r=r -C

and the use of the following Wronskian

H(1)'(kr )H (2)(kr)- H()(kr )H(2)'(kr - 4i , (23)V ss V S V S 7Tkrs

we obtain

c(v) = -i (24)
8[R 2 (v)-Rl(v)]

and the "resonance" condition; i.e., R2 (v) = R1( v). From the boundary conditions

at r=a I , i.e.,

g(r,rs;v) = g(r,r s;V ) (25)

r=a l-E r=a 1 +F

and

A 3rD 
(26)

r1l- r~al+t

r=aI-E 1

7



we find

R (v) =-[k HQ')'(a k )H1 (kal)-k H~l)(ka,)H' 1) (kal)J ,

2 V 1V V V(27)

a "reflection" coefficient at the boundary. Similarly, from the boundary

condition at r=ao, i.e.,

.i2 a = - -ik6g (28)

we find

R (v) -[H~l)'(ka ) + i6H(1 )(ka 1/(9

[H (2)'(ka ) + i6H (2)(ka )
V 0 V 0

where ! I . vertical polarization
f5 (30)

V 7 ,horizontal polarization

and

n r we

where a is the ground conductivity in Siemens/in and c r is the relative dielectric

constant. Knowing Rl(v), R2 (v) and cx(v) allows us to solve for T(v) in (19), again

using the continuity of g at r=a1 and we obtain

T(v) =-(i/8)[H~l)ka + R vH(2)(a)

[R ( ) R ( ka1~ ) ( ) H 
(3 2)]

(32

Similarly, the jump condition for g gives

ot(v) R 2(v) =(i/8) .(33)

From the boundary condition at r=a2, we find

8



R2(v) : -{k H(1)'(ka 2 )[H l)(ka2) + Rl(v)H(2)(ka 2)]

- k H(1) (ka2)[H(l)(ka2) + Rl(v)H(2)'(ka2)]} /V 2 )V2 1 (34)

{k H(2)'(ka2)[Hl)(ka2) + Rl(v) H(2) (ka2)]

- k H(2) (ka2)[Hl)'(ka2) + Rl(v)H(2)'(ka

and
( (1) (,(2)T(v) = (v)[H )(ka 2) + R2 (v)H (ka2)] /(35)

[H~l)(ka2) + R,(v)H(2)(ka2)].

We now turn our concentration to the aperture integration ao < r' <- in (17). The

geometry of the problem is given in Figure 2, where we will confine our analysis to

the case where ao  < rs < a, and ao < r < a2'

* A
k

a k Typical Integration Points, r'
k*

Source.-
Observer

ao o0

Figure 2. Geometry for aperture integration. Modes in regions (1) and (II)
are v, and v2, respectively.
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Using the "broken" functions in (19) and (20) with appropriate interpretations for

the source and observations points (i.e., in the aperture plane the integration

point, r', becomes the observation point, r, in Region (1) while the integration

point, r', becomes the source point, rs , for Region II), we have

r
r 1) 2 (2) 2 dr'

f ig (r' ,r5 s V1g (r,r ;v2) = at(vl)a(Y2)i1 (kr S) V2(r r-v1(r) k

o 0

a (36)

+cz(vl)c(v 2) kr )o (kr) r- (kr') (kr')(krs) dr2(kr) dr'

rr "

• V (kr') V2(kr')

a 2a d r ' H(1)(k' (r )T( vl,(krs v(kr "
+0'(v2 )T(vl)o, 1(kr s)Ov2 (kr) f ,HV1(r V 2(r)Tv2)T( 2r)fl

dr' H(l)(k r,)H(1) (kr')

where

iV(kr) H(1 )(kr) + Rl(v)H(2 (kr)
(k)=H(1) (kr) + R2()H (2) (kr).

From the differential equation (9) for the radial functions and linear combinations

as given in (37) we have

ro V% 2 J

r dLr. (kr')qo (Wr) -- r~ ( V1  (kr) -r ] 2J r VI V2( _ V 2 (r v2 rr
S 1 2  -r'- r r'=r

(38)

2_a v 0 Vi(ka )~ v21 ¢2 (k O  -0rr -0vk o

r 0'i3o

( 2_V 2 [v2 (kr) - - vl (kr) -- ,

1- 2)r'-r r'-r

10



because tl V(kr) satisfies (28). Also

r (v- 2)r=

-r 0 t (kr)),(r' (kr ) -2
rv - 2 V 1r'VI ) r 1 lrs r e

(k-~~r) 2 2 [~(k 1) - - (k) 2
2 (1- 2 ) r V1

f 2 2 I r V (1 T r-

(40)

r s---' (kr ) 1 V i (kr ) a~2

(1-v2) r'=r sr5

The following integral involves both the wave numbers k and k; i.e.,

82 M M (kr')

. ' v, (kr')~ (kr') - H(ka H( )--a .V2' HM;v~ 1 2-i-
1 2' r'=a 2  -'a 2

(41)

8 - (k V1 (kr' l)k ) v2+ 2

V2_ 2 t2 (k1) -are ' -H'Ji 1  a re 2n 2
1 2 1 a ' = (V1 -v2 )

(v 1 -v 2 ) r a 2 ~ 1

aa



and, finally,

7,' (1 - 2  (1) v(1krl)
J -r H ((r')H(1)(;rl) -~-~-~H

1 (ka) 1 r =a
fa2  2 (V 2_v 2  v ) aV 2

a 21 al~ l (kr') I ' a2(42)
V 

2

art I~r'=

Substituting (38), (39), (40), (41) and (42) into (36) gives

00

(1)

(kr 4 (kr)r [, (kr) 2 2 (kr) 2~~
V r r ' r 2r = r

(2)

1
+ v (kr)p V (kr )r s[ q'j (kr ) -ar 

Vr = V ( rs T - l

(3)

+ (kr)ip (ka )a, [ov (kr ) V- -WV(a1)(-iJ -- S)- aV r

r=a 1  V1 r =a

(4)

VHl ((kr'

+~ (kr)~ (kr) _ (k) a,[0 (ka2) , -H'')kaj \2
) VI s H V (a1, 2 2 ) r'=a2-V12 ) T r r=a 2

12 _ _
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1v (ka 1) a2  (5)

+0 (kr)o (kr ) 2Ank2  r'dr' H(')(kr')q (kr') (43)
v 2  VI S 'l(alV 21 a 1

(6)

+0 (kr)o (kr) S Ja) (4i /7T) 1 2

2V 1  H(')'(ka2 ) (ka )-hH '(ka )%'v (ka2)

We will show that terms (1) and (2) in (43) represent the "uncoupled" or zeroth order

solution and (6) represents the first order coupling, while the remaining terms;

i.e., (3), (4), and (6) are all of second order. Consider the following

combination of terms from (3) and (5); i.e.,

(ka1) I_____
(kr)o, (kr ) H) a rk a (ka,)r

v2 v (k S ( ) ~(a) (1)' I'= - 1ka1)2 (ar)] (44)

v1 (ka)) (4))
kov2 (r v1 k S) HT(a ) [2V2 a2)vl1 k2) - 1lp kH k 1

v 11

We will make use of the following asymptotics

H~1l) 2 1/3 (1)

(2) 2 1/3 (2) 
(5

v 2 (vz) -a Wi (t +x)

where Wi ()and Wi(2) are Airy functions with (4)

ka) 2/3 ka 2 ka 1/3
t~ - Zri[- (v ) I or (v =ka + t) (46)

and the dimensionless "radial wavenuniber"

x ka/(- .a1/ (47)

13



Using (45), (46) and (47) we find (44) becomes

2 1/3 (1) (2) 1/3 (1) (2)
k () I (t 2 +X)+Rl(t 2 )Wi (t2+Xr)](k--s) [Wi (t+Xs)+R2 (tl)Wi (tl+Xs)].

5

a 1/3 (1) (2) 1/3 (1)'
a2 ([Wi (t2) + R2(t2)Wi (t2)] (^2) Wi (t1 + x + xD) (48)

[a2 2 2( ka2  a D

2 1/3 (1) (2) 2 1/3 (1)' X
I- ) [Wi (t2+Xa)+R 2(t2 )Wi (t2+xa)] (^2) Wi (tI  x Djkal

with

ka1 1/3
Xr = k

ka1 1/3

xa = k a al / 3

xs =k(aI - rs)/(T)l1/1a 1/3

ka1 2/3
xD = 2An(-T-)

Now, we see if the radial wavenumber, xa, is small, (48) becomes

1/3 1/3 1/3 (1) (2)
13/3 2 2 4{a2 -a1  ((2rs (A ) [Wi (t2+xr)+R 1(t2 )Wi (t2+Xr)].

's kk
(49)

(1) (2) (1) (2)

4W1 (t+X5)+R2(t2)Wi (ti+xs)] [WI (t2 )+R2 (t2 )Wi (t2 )]

(1)'
•Wi (tI + xD)

which is negligible compared with (1), (2) and (6).

14



Also from (3) and (5), we find

V 2(kr)o (krs)a, [0,2(kal) 1 - l(ka ) II
r'=a 

I r'=a l

2/3 (1) (2)
2ika l1 a(kr)ov(krs)R2(t2) ( [Wi (tI)Wi (t2 + xa) - (50)

(2) (1)
Wi (t l )Wi (t2 + Xa)]

which is negligible, again compared with (1), (2) and (6). Consider (6), and

the rational function

[H(1 )(ka)H ka 2 ) - H( 1 )(ka )H(a 2 )II
2 21 2 (51)

[k H 1'2 (ka2) (ka )- k H(1)(ka2)q' (ka2)V2 2)v2 2) V2  2'2 2)

(1) (1)' (1) (1)'

[Wi (t2+XD)Wi (t1+XD+x a )-Wi (tl +XD+Xa)Wi (t2+xD)]

(1)' (1) (2) (1) (1)' (2)'
k Wi (t2+xD)[Wi (t2 )+Rl(t 2 )Wi (t2 )]-k Wi (t2+xD)[Wi (t2 )+Rl(t 2 )Wi (t2)]

which is negligible for small radial wavenumber, xa' Note, even if xD = 0, the

(1)' (2)
denominator in (52) is non-zero because it involves the Wronskain Wi (t2 )Wi (t2)-
(1) (2)'

Wi (t2 )Wi (t2 )=-2i/. Of the terms in (43) remaining, (1) and (2) represent the

uncoupled normal modes and are given by

Vl (krs )O (kr)r [ V2(kr) -Ts- - 0 2(kr) 52r'=r r'=r

(52)

(4i/7)[R 1(v2) - R2(v2)] 'v1 (krS) 0Vl(kr)

and

15
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v2 (kr) V2 (krs)r s [r v(krS )  - - (krs) r'
2 2 ~ ~ r' '-r =r5 (53)

= (4i/Tr) [R2(v ) - RI(vI)] p2(kr)p2(krS)

where use of (23) is made. The term involving the coupling between regions (I) and

(II) is (5) is given by

x (ka1 ) a2

2(kr) (kr ) 2Ank2 f r'dr' H(1)(kr')% (kr') (54)V2 V Iks H(l)(ia d 1 2

Returning to (17), we have the vI- and v2-integrations remaining. These are easily

performed using Cauchy's Theorem; the integrands are analytic except at the simple

poles which are solutions of

R ( I2 ) = R2 1)  (55)1V 2 (V12

The residues at the simple poles are

(1) -1

a(t) (Tr/2i XD[Wi (t + XD)]2 1 (56)
1 (2) (1)' (2)' (1) 2 (2)(t+x 2

[Wi (t)Wi (t+xD)-Wi (t)Wi (t+xD)] [Wi o)

with

1/3
x0 : k(aI - ao)/(kal/2) (57)

2 2

16



The vl" and v2-integrations yield the desired result

E(r) = (-1/32) 1 3 a(tm)t(kr)tm(krs)
( (ka/2)/3 1 11 m

exp[i( -s)(ka I + i (kal/2)
1/3 t ]

+( 1 al(t)Otm(kr)4t(krs) (58)
(ka/2) 1/3  m1 2 2m

.exp[i~p-ps)(ka 2 + i (ka2/2)
1/ 3 t )] -

+ *2An (ka/2) 1/ 3 E nl(tt)a n) t2 t 1t
4 1 at)a(t2) 2 2 M

m n [(v T ) 2( H N)(ka I )

*exp[ika I + ( 0 - )tm(ka /2)1/3 + ika2 + (0-0 )tn(ka2/2)
1 /3]

a ( )^

Skf dr' Htm(kr') t (kr')

a81 1 2

with

(m) 2 ,n)2] ! a, 1/3 a24/3 (59

[(vl)(v) ] 2ka I jk(ala 2) + (T) 1 [, t]

In (58), E(r) is the field normalized by the source intensity, this result is used

for numerical experimentation and has been further normalized as W IE(r)I (-1/32).

Therefore, W is dimensionless.
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SECTION III

REMARKS

1) The single sums over the modes in (58) represent the field, assuming

uncoupled normal modes 5 .)6) The assumption proceeds by taking the boundary

conditions to be independent of the coordinate in the direction of propagation, but

the boundary conditions in the normal direction are the same that would be applied

for perfectly stratified media. It is also assumed that eigenfunctions correspond-

ing to a particular normal mode are orthornormal; i.e.,

f d n(kr') m(kr') = 6

ao

Unfortunately, in many theories, it is often very difficult to justify when to

neglect the coupling. The solution given in (58) allows a direct determination of

the effect of coupling. In (58) if the coupling is negligible, the solution suggests

the angular position of the step is unimportant, and one must only remember which

medium he is in; e.g., source in medium (I), observer in medium (II).

2) Cho and Wait (7 ) gave a derivation for the fields in a stepped model for

a non-uniform duct which employed the use of a non-Hilbert space inner product;

i.e., < n , m > , instead of the usual definition in terms of a complex-valued

function or ordered pairs with inner product < 9n, > . The natural metric

1/2
{x-y, x-y}

is a real nonnegative quantity and represents the physical quantity power. Recall-

ing a metric space is complete if every Cauchy sequence is a convergent sequence,

the usual definition of a Hilbert space is an inner product space which is complete

with respect to its natural metric. The Cho and Wait result can be explained by

the use of "biorthogonal" coordinates Let { d be the set of nonzero eigen-

values of the differential operator

£ = - ( r - ) + rk 2

and let {n } be the corresponding eigenfunctions. The nonzero eigenvalues of the

adjoint (formal) operation Z are given by {v"} and the corresponding eigenfunctions
m

will be denoted by m Now, take for the set {'Pm }

= 2 '" "

18



Then, indeed, the innner product will satisfy

< n, > = 6n<:n ' m mn"

In fact, Cho and Wait's result for < n,#m > equals our result in (56); i.e.,

< 0nm > = al(t). This yields the interesting conclusion that the Cho-Wait inner

product will equal zero if and only if a1(t) equals zero which requires the

existence of a double root! This can occur even in a single section duct. Proof:

Since the denominator of al(t) is a rational function, the only singularities it

can have in the entire complex tplane are poles. A double root suggests degenerate

modes in the two regions; i.e., the spatial distribution of sources across the

aperture plane = o has the same wavelength as the normal modes being driven and

a resonance occurs. The integral formulation used here in terms of the Green's

function approach completely sidesteps the issue of what the normalized "eigen-

functions" should be in the biorthonormal coordinate approach. It may be that since

the residue in the Green's function approach equals the inner product in the bio-

rthornormal case and because the H(l)(kr) are dense in our Hilbert space, any function

can be approximated to within c>o by Eam Hl)(kr). The problem comes in finding out

mmhow to express the am's. This is probably an example of a problem where the solution
can be found by a Green's function method but only a generalization of the notion of

eigenfunctions permit a solution in terms of the latter. The other point is that the

residues come out naturally in the Green's function method.

3) The double sum in (58) depends upon the location of the vertical step,

o and represents the coupling from mode m to mode r. The magnitude of this term

depends, on the electrical step size, k(a2-a,), as seen in (58) and (59).

29
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SECTION IV

EXAMPLE

The numerical results for the four "height-gain" curves in Figure 3 correspond

to the following choice of parameters:

a0 = 6378 km

a1 = 6379 km

a2 = 6379000, 6379010, 6379020, 6379030 m

rs = 6379 km

f = 100 MHz
An = 25 N-units
a (o- s) 1 00 km

a (0s-p ) 100 km

6 = 0.3 - i4xlO - 2 (a = .001 Seimens/m, cr = 10)

From Figure 3 it appears that a step size of about 20m causes significant change in

the height-gain pattern. We will refer to this as the "resonant" step-size. This

would correspond to a radial wave number from (47) of about 0.463 radians (i.e.,

about 7/8). The second limiting criteria for our solution in (58) is the number of

modes required for convergence of the series. For the example in Figure 3, 10 modes

gave two significant figures. The convergence of the series is dominated by the

exponential terms in the series for small m and by the asymptotic decay of the

residues for large m; i.e.,

al(tm ) - exp(- 4/3 t 3/2 )/4 t 3/2

where for tm < x0 , the imaginary part of tm becomes small. In Figure 4, the effect

of the number modes is shown for a 10 km separation between source and step and step

and observer. At this distance 30 modes are required for convergence.

In Figures 5 and 6, the'choice of the parameters is the same as in Figure 3

except the frequency is 300 and 60 MHz respectively. Figure 7 is the same as

Figure 4 except the refractive index contrast is 50 N-units. The limiting step size

for this case is about 10 m. The resonant step size for 300 MHz is about 5 m for

An = 25. In Figures 5, 6 and 7, 10 modes provided adequate convergence of the sums.

20
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SECTION V

CONCLUSIONS

A Green's function approach is used to examine the effect of varying the step-

height in a tropospheric duct with a single step discontinuity. If the electrical

height of the step is less than the "radial" separation,

k(a2 - aI)/(ka/2)1/3

the vertical distribution of the field strength agrees with the fields in a duct

with no discontinuity. This agrees with a result obtained by Wait and Spies for

an ionospheric duct 9 ). The location of the step in relation to the source and

observer determines the number of modes required for convergence.
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